Anritsu MS2661N Spectrum Analyzer Readout


A spectrum analyzer (SA) is a very useful tool when it comes to measure spectra of radio frequency signals. I recently acquired a 2004 era spectrum analyzer. It’s from a Japanese test equipment manufacturer Anritsu and the model number is MS2661N. Luckily there are operating manuals available online but I wasn’t able to find service manuals for this type of spectrum analyzer on the internet. There are some service manuals available for similar models of spectrum analyzers (e. g. MS2650/MS2660) which would allow troubleshooting but I would be lost if the instrument breaks.

Anritsu MS2661N Spectrum Analyzer (100 Hz – 3 GHz). Those blue handles totally aren’t butchered from Rohde & Schwarz test equipment… Sacrilege! Don’t ask!

However, I’ve been looking for a decent SA for a longer time and stumbled upon the Anritsu MS2661N. It had a bunch of very nice and useful features: frequency range 100 Hz to 3 GHz, 30 Hz resolution and video bandwidth, oven controlled crystal oscillator (OCXO), GPIB interface, 10 MHz reference IN/OUT and a tracking generator ranging from 9 kHz to 3 GHz. I was looking for a similar SA from HP/Agilent 8590 Series or Tektronix but there were no attractive offers at the time. Either the SA frequency range was too low for modern ages (1 GHz) or outside of my measurement capabilities (26 GHz), the price was either too high or it was partially broken. There were also 75 Ohm spectrum analyzers which aren’t very useful for what I’m doing. On the other side, the documentation for HP/Tek hardware is the real deal so leaving this kind of test equipment ecosystems was a tough decision.

Long story short: I wasn’t disappointed and the SA works perfectly fine. I don’t want to write a lengthily blog about it. One of the first experiments was connecting my GPS disciplined oscillator to the signal generator and spectrum analyzer simultaneously in order to provide the same external reference for both instruments and checking if the frequency (1.5 GHz) and the amplitude  (-35 dBm) are accurate. Acquiring measurements was super easy and the operation of the SA is very straight-forward.

Agilent E4432B Signal Generator. Note that the EXT REF is on and the output signal is referenced to a 10 MHz GPS disciplined oscillator.
10 MHz reference signal distribution from a GPS Disciplined Oscillator (GPSDO).
Back side of the Anritsu MS2661N. The 10 MHz signal is fed into the REF IN.

Documentation of Measurements

I would consider the somewhat cumbersome recording of readings as a minor disadvantage of this SA. Taking a photograph of the display may be “quick and dirty” but you have to deal with bad image quality due to reflections, visible RGB pixels and picture alignment. It is possible to take screenshots in bitmap format (BMP) but one needs a special type of a Memory Card (basically a PCMCIA or PC Card) in order to save the screenshots on an external storage. That’s really unfortunate but measuring instruments of that era were either equipped by a floppy disk or Memory Carc. I was always afraid of damaging the fragile pins while pushing the PCMCIA card in its slot although it is rated for 10k mating cycles. The MS2661N type SA even has a 75 Ohm composite out – it’s possible to record video stills in the NTSC format. However, there are two elegant methods which I would like to show how to transfer the readout from the instrument to the personal computer (PC) by modern means.

A photograph taken of the frequency spectrum. The image shows LCD pixels, scratches on the surface of the front panel and reflections due to bad light conditions.

Method 1: Sending a Hard Copy from SA to a PC

Back in the days, the measurement results such as frequency spectra would be printed on a piece of paper as a part of the documentation. A device called printer or plotter was needed and the process was called “hard copy”. The difference between a printer and plotter is how the drawing is generated: while the printer generates text and images line by line, a plotter can draw vectors in a X-Y-coordinate system. HP developed its own printer control language back in 1977 for this purpose – the HP-GL or Hewlett-Packard Graphics Language. HP-GL consists of a set of commands like PU (pen up), PD (pen down), PAxx,yy (plot absoute) and PRxx,yy (plot relative) in order to control a plotter, which is basically an electro-mechanically actuated pen. The commands are transmitted in plain ASCII via GPIB or RS-232C interfaces. If we were somehow able to capture the HP-GL ASCII code, it should be possible to generate a lossless vector graphics instead of a lossy bitmap.

An example of the acquired HP-GL code in a text editor.

Hardware Requirements

Besides the already mentioned spectrum analyzer one needs either a GPIB/USB or GPIB/Ethernet adapter. I have tested it successfully with a National Instruments GPIB-ENET/100 on a Windows 10 machine with NI 488.2 v17.6 drivers. It should also work with a NI GPIB-USB-HS+ (Chinese clone) adapter.

Software Requirements

I was looking for a quick solution how to acquire hard copies. Thanks to einball on a certain Discord channel 😉 for showing me the KE5FX 7470.EXE HP-GL/2 Plotter Emulator. John Miles, KE5FX, already wrote a software back in 2001 which does emulate a HP 7470A pen plotter. The 7470.EXE is still maintained by John and supports popular spectrum analyzers from HP and Tektronix. His software is able to fetch the HP-GL ASCII via GPIB and render the hard copy image on the screen. The image may be saved in a bitmap format (BMP, TIFF, GIF) or in a vector format (PLT, HGL). I have tested John’s software with Anritsu MS2661N and it worked perfectly fine. I suppose this could work on similar Anritsu spectrum analyzer models, such as MS2661C.

Setting up the Spectrum Analyzer

Here is a brief summary how to obtain a hard copy from an Anritsu MS2661N spectrum analyzer:

  • Connect the spectrum analyzer to the GPIB adapter and boot up the device
  • Go to the Interface menu and use settings as followed → GPIB My Address: 1, Connect to Controller: NONE, Connect to Prt/Plt: GPIB, Connect to Peripheral: NONE
    The SA wants to send its data via GPIB to a plotter. It’s important to disable the “Connect to Controller” option, otherwise it won’t be possible to select GPIB as “Connect to Prt/Plt”. The GPIB address is set arbitrarily to 1
  • Go to Copy Cont menu (Page 1) → Select Plotter
  • Copy Cont menu (Page 2) → Plotter Setup → Select following options: HP-GL, Paper Size: A4 Full Size, Location: Auto, Item: AllPlotter Address: 2
    It’s important to set the “Plotter Address” value to a different number than the “GPIB My Address“. If both addresses share the same number, the hard copy will result in a timeout error

Install John’s 7470.EXE software and start the HP 7470A Emulator. There is no need to change the settings of the GPIB controller, it works out of the box. Click on GPIBPlotter addressable at 2. The selected address in 7470.EXE should be identical as the previously set Plotter Address. In order to obtain a hard copy, press the button w and the 7470.EXE should display a message like shown in the screenshot below. Once you press the Copy button on the spectrum analyzer, a data transfer progress should be visible. It takes about 10-15 seconds to transfer the data (approx 7-10 kb) from the SA to the PC. Once it’s complete, an image of the current frequency spectrum is shown on the display. That’s it.

Creating Publication-Quality Vector Images

At this point, it’s possible to save the acquired hard copy in a bitmap image format. If one needs a publication quality images – which should be free of compression artifacts – one should save the images in a vector format such as PLT/HPGL. This workflow proved to be a little bit inconvenient but it’s perfectly doable. Save the hard copy as .PLT and open the image in a HP-GL supported viewer. John suggests few of them on his website – I’ve tried CERN’s HP-GL viewer. It’s distributed free of charge and still maintained by the developers. Download their viewer and load the PLT-image. If the colors seem wrong, there is a setting where you can change the pen colors. Once done, it’s possible to export the PLT image as PostScript (PS) or Encapsulated PostScript (EPS) or print as PDF. EPS files can be embedded in LaTeX documents or can be imported in a vector graphics editor such as Inkscape.

The results turned out to be really good. Especially the vector images are crisp and sharp. One can zoom in without any image quality losses. The printouts on my laser printer are perfect. A little downside would be few breaks in the workflow: one has to use three different applications in order to obtain, convert and process the images. But it’s worth it 😉

Method 2: Readout Data via pyvisa and Plot it via Matplotlib

A different method to plot the frequency spectra would be by downloading the acquired raw data via GPIB and plot it directly. This is exactly what I’ve done. I’ll share the Python code down below. It’s possible to refine the plot by automating more stuff: one can generate annotations directly from queried instrument settings. Just put enough time in it and you’ll get superb results. The plotted image can be saved directly in a Scalable Vector Graphics (SVG) or any supported bitmap/compressed format.

Spectrum analyzer data plotted via Python’s library Matplotlib
# -*- coding: utf-8 -*-
Created on Tue Jan  3 16:45:39 2023

@author: DH7DN
import numpy as np
import pyvisa
import pandas as pd
import matplotlib.pyplot as plt

#%% Open the pyvisa Resource Manager
rm = pyvisa.ResourceManager()

#%% Create the Spectrum Analyzer object for Anritsu MS2661N at GPIB address 13
sa = rm.open_resource('GPIB0::13::INSTR')

# Print the *IDN? query

#%% Take a measurement
# Set frequency mode to CENTER-SPAN
sa.write('FRQ 0')

# Set the center frequency in Hz
cf = 1.5E9
sa.write('CF ' + str(cf) + ' HZ')

# Set span in Hz
span = 10000
sa.write('SP ' + str(span) + ' HZ')

# Take a frequency sweep (TS)

# Select ASCII DATA with 'BIN 0' according to Programming Manual
print(sa.write('BIN 0'))

# Create a Python pandas Series
data = pd.Series([], dtype=object)

# Fetch data, convert string to float, print the power level values
for i in np.arange(501):
    data[i] = float(sa.query('XMA? ' + str(i) + ',1')) * 0.01

#%% Plot the results
# Generate the frequency values for the x-axis
f = np.linspace(cf-span/2, cf+span/2, 501)

# Plot the results, set a title and label the axes
plt.plot(f, data)
plt.xlabel('f in Hz')
plt.ylabel('Power Level in dBm')
plt.title('CF: 1.5 GHz, Span: 10.0 kHz, RBW: 100 Hz, VBW: 100 Hz, \n Peak at 1.5 GHz and -35.85 dBm')

Few things to consider when using Python to obtain data from the spectrum analyzer:

  • Anritsu MS2661N acquires only 501 data points per sweep
  • The frequency axis values need to be generated manually. I used numpy‘s linspace method. It was a bit tricky because you one has to change the generation of frequency step values depending on whether parameters “Center Frequency & Span” or “Start/Stop Frequency” are used
  • Fetching the data takes quite some time (approx. 30 seconds). This is due to the fact that every single data point needs to be queried with the XMA? command in a for-loop. This is at least how it’s done in an example from Anritsu’s Programming Manual. I haven’t figured out yet how to fetch a block of data

Summary and Conclusion

I was clearly impressed how easy it was to obtain good quality frequency spectra images from a 20 year old instrument. I’ll refine the workflows and do further testing in Python. It should be possible to do all of this “automagically” via one little Python script. So far I’m really happy with the results where I don’t have to rely on smartphone pictures anymore. Thanks to einball for his help (basically googling for me) and to John (KE5FX) for writing his plotter emulator which helped me a lot to obtain hard copies from my SA. That’s it for today! Happy measurements! 😉

73 de Denis, DH7DN

Leo Bodnar Fast Risetime Pulse Generator

A new and useful addition to the lab is a (30 ± 2) ps Fast Risetime Pulse Generator from Leo Bodnar Electronics. A pulse generator is needed to test oscilloscopes for their analog frequency bandwidth and risetime. Other applications for pulse generators would be for example time domain reflectometry (TDR) or high-speed broadband measurements (radar, semiconductors). The function description and details of the Leo Bodnar Pulse Generator are very well explained in a YouTube video by Shahriar from TheSignalPath.

So, having all the informations I need, I made some photo(n)graphs and did a quick measurement on my Tektronix 2465B analog oscilloscope. Its specified bandwidth should be 400 MHz. By measuring the rise time \(T_\mathrm{r}\), one may estimate the analog bandwidth \(\Delta f\) by using the following equation:

\(  \Delta f = \cfrac{0.35}{T_\mathrm{r}}.  \)

For example, if the rise time is measured in nanoseconds, the bandwidth will be stated in GHz because… physics: \( f = 1/T \).

The pulse generator is a very compact device. Its dimensions are approx. 24 mm x 24 mm. It is equipped with an USB and Trigger (SMA) connectors on the front side and a oscilloscope connector (BNC, SMA or 2.92 mm microwave) on the back side. In order to operate it, one needs a USB cable with a power supply (e. g. a PC or an USB power bank), various adapters (SMA to BNC) and a short coaxial cable in order to connect the trigger output to the oscilloscope.

Leo Bodnar Fast Risetime Pulse Generator.

I ordered a SMA version of the pulse generator, however they shipped me the 2.92 mm version which is slightly more expensive (99 pounds). The shipping from UK to Germany took approx. 2 weeks and added 20% costs due to customs and shipping. Yeah, Brexit has a price tag for all of us. The 2.92 mm version has a slightly higher upper frequency specifications (40 GHz) compared to SMA (18 GHz). They provided me a calibration chart with determined rise times of approx 30 ps (rising edge) and 28 ps (falling edge).

In order to connect the 2.92 mm microwave connector to an oscilloscope, one needs a proper adapter (shown on the left handed side). The adapter is not shipped and has to be bought separately.
Pulse generator with SMA to BNC adapter.

I’ve added some cool stereo microscope close-up pictures in my gallery, check them out! Here for example, one can see the center pin of the 2.92 mm connector. The center pin is surrounded by air as dielectric, as opposed to PTFE (Teflon) on a standard SMA connector. The center pin is very delicate and one has to handle it very carefully in order to minimize the wear out.

2.92 mm microwave connector.

The pulser is powered via USB. The USB and SMA cables were not included. I powered the pulse generator via a battery/power bank. The RF output was connected into a 50 Ohm terminated Channel 1, the trigger output was connected to Channel 2. Trigger settings were set to Channel 2 rising edge.

Experimental setup.

The first signal one should see is a 10 MHz square wave with approx. 1 V peak to peak (1 Vpp) amplitude. If you’re using 1 MΩ termination instead of 50 Ω, the amplitude will be 2 Vpp.

Leo Bodnar pulse generator: 10 MHz square wave.


Measurement of the 10 MHz square wave.

Next step will be the determination of the rise time of the rising edge. One has to zoom in to the maximum value (e. g. 5 ns/div) and activate the x10 magnification. This will lead to a 500 ps/div time scale.

Tektronix 2465B with Leo Bodnar fast risetime pulse generator.

Taking the measurement is quite straight-forward. One has to determine the 10%-90% rise time. The lower image shows how the measurement is performed.

Measurement of the rise time on a Tektronix 2465B. The baseline is placed on the 0% dotted line. Now we seek the intersections of the 10% and 90% horizontal lines with our trace. The cursors are used to pinpoint the intersections. The rise time is approximately 0.84 ns.

Now plugging in the measured value of \( T_\mathrm{r} = 0.84~\mathrm{ns} \) into the Bandwidth Equation gives us:

\( \Delta f~ \mathrm{[GHz]} = \cfrac{0.35}{0.84~\mathrm{ns}} = 0.416~\mathrm{GHz} = 416~\mathrm{MHz}. \)

A resulting bandwidth of 416 MHz for a 400 MHz analog oscilloscope is quite acceptable! This is almost my fastest analog oscilloscope. Since I’ve acquired quite a few of Tektronix 7000 series oscilloscopes over time, I will test the pulse generator on my 500 MHz units. I’ll share the results here.

73, DH7DN